Lecture 21 : Examples of Lower Bounds and Assouad ’ s Method

نویسندگان

  • Akshay Krishnamurthy
  • Soumya Batra
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assouad and Le Cam – proving distribution learning and testing lower bounds

To prove lower bounds on learning a family C, a very common method is to come up with a (sub)family of distributions in which, as long as a learning algorithm does not take enough samples, there always exist two (far) distributions which still could have yielded indistinguishable “transcripts”. In other terms, after running any learning algorithm A on m samples, an adversary can still exhibit t...

متن کامل

Chapter 3 Assouad ’ s method

Assouad’s method provides a somewhat different technique for proving lower bounds. Instead of reducing the estimation problem to a multiple hypothesis test or simpler estimation problem, as with Le Cam’s method and Fano’s method from the preceding lectures, here we transform the original estimation problem into multiple binary hypothesis testing problems, using the structure of the problem in a...

متن کامل

Lecture 18 - 19 : Communication complexity lower bounds

In the previous lecture we discussed the fooling set method for proving lower bounds on deterministic communication complexity. In this lecture we’ll see two more ways we can prove these lower bounds: the Rectangle Size Method and the Rank Method. Both of these are stronger than the fooling set method. We’ll show Ω(n) lower bounds for the dot product function with both methods while the fooling...

متن کامل

Chapter 2 Minimax lower bounds : the Fano and Le Cam methods

Understanding the fundamental limits of estimation and optimization procedures is important for a multitude of reasons. Indeed, developing bounds on the performance of procedures can give complementary insights. By exhibiting fundamental limits of performance (perhaps over restricted classes of estimators), it is possible to guarantee that an algorithm we have developed is optimal, so that sear...

متن کامل

Universal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications

It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy.  A formula to compute the lower upper bounds on the number  of interval-valued fuzzy sets needed to achieve a pre-specified approximation  accuracy for an arbitrary multivariate con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015